Evidence for fungal and chemodenitrification based N2O flux from nitrogen impacted coastal sediments
نویسندگان
چکیده
Although increasing atmospheric nitrous oxide (N2O) has been linked to nitrogen loading, predicting emissions remains difficult, in part due to challenges in disentangling diverse N2O production pathways. As coastal ecosystems are especially impacted by elevated nitrogen, we investigated controls on N2O production mechanisms in intertidal sediments using novel isotopic approaches and microsensors in flow-through incubations. Here we show that during incubations with elevated nitrate, increased N2O fluxes are not mediated by direct bacterial activity, but instead are largely catalysed by fungal denitrification and/or abiotic reactions (e.g., chemodenitrification). Results of these incubations shed new light on nitrogen cycling complexity and possible factors underlying variability of N2O fluxes, driven in part by fungal respiration and/or iron redox cycling. As both processes exhibit N2O yields typically far greater than direct bacterial production, these results emphasize their possibly substantial, yet widely overlooked, role in N2O fluxes, especially in redox-dynamic sediments of coastal ecosystems.
منابع مشابه
The role of denitrification in nitrogen removal and carbon mineralization in Mid-Atlantic Bight sediments
Benthic chambers were used to measure in situ fluxes of dissolved gases (N2, O2, and N2O) and inorganic nutrients (NO3 , NH4 , and PO4 3 ) in continental shelf sediments of the Mid-Atlantic Bight during spring through autumn (May– November). Denitrification was determined by the rate of increase in N2 relative to Ar, measured using membrane-inlet mass spectrometry. Although sediments were a sou...
متن کاملMolecular evidence for sediment nitrogen fixation in a temperate New England estuary
Primary production in coastal waters is generally nitrogen (N) limited with denitrification outpacing nitrogen fixation (N2-fixation). However, recent work suggests that we have potentially underestimated the importance of heterotrophic sediment N2-fixation in marine ecosystems. We used clone libraries to examine transcript diversity of nifH (a gene associated with N2-fixation) in sediments at ...
متن کاملSediment Nitrous Oxide Fluxes Are Dominated by Uptake in a Temperate Estuary
Coastal marine ecosystems are generally considered important sources of nitrous oxide (N2O), a powerful greenhouse gas and ozone depleting substance. To date most studies have focused on the environmental factors controlling N2O production although N2O uptake has been observed in a variety of coastal ecosystems. In this study, we examined sediment fluxes of N2O during 2 years (2012–2013) in a s...
متن کاملSpatial and historic variability of benthic nitrogen cycling in an anthropogenically impacted estuary
*Correspondence: Robinson W. Fulweiler, Department of Earth and Environment, Boston University, 685 Commonwealth Avenue Rm. 130, Boston, MA 02215, USA e-mail: [email protected] Human activities have dramatically altered reactive nitrogen (N) availability in coastal ecosystems globally. Here we used a gradient of N loading found in a shallow temperate estuary (Waquoit Bay, Massachusetts, USA) to examin...
متن کاملWarming increases nutrient mobilization and gaseous nitrogen removal from sediments across cascade reservoirs.
Increases in water temperature, as a result of climate change, may influence biogeochemical cycles, sediment-water fluxes and consequently environmental sustainability. Effects of rising temperature on dynamics of nitrate, nitrite, ammonium, dissolved inorganic nitrogen (DIN), dissolved reactive phosphorus (DRP), dissolved organic carbon (DOC) and gaseous nitrogen (N2 and N2O) were examined in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017